Interspecific acoustic recognition in two European bat communities

Publication Type:Journal Article
Year of Publication:2013
Auteurs:Dorado-Correa, Goerlitz, Siemers
Journal:Frontiers in Physiology
Volume:4
Date Published:Jan-01-2013
Mots-clés:acoustic communication, eavesdropping, echolocation, feeding buzz, interspecific communication, intraspecific communication, search calls
Résumé:

Echolocating bats emit echolocation calls for spatial orientation and foraging. These calls are often species-specific and are emitted at high intensity and repetition rate. Therefore, these calls could potentially function in intra- and/or inter-specific bat communication. For example, bats in the field approach playbacks of conspecific feeding buzzes, probably because feeding buzzes indicate an available foraging patch. In captivity, some species of bats recognize and distinguish the echolocation calls of different sympatric species. However, it is still unknown if and how acoustic species-recognition mediates interspecific interactions in the field. Here we aim to understand eavesdropping on bat echolocation calls within and across species boundaries in wild bats. We presented playbacks of conspecific and heterospecific search calls and feeding buzzes to four bat species with different foraging ecologies. The bats were generally more attracted by feeding buzzes than search calls and more by the calls of conspecifics than their heterospecifics. Furthermore, bats showed differential reaction to the calls of the heterospecifics. In particular, Myotis capaccinii reacted equally to the feeding buzzes of conspecifics and to ecologically more similar heterospecifics. Our results confirm eavesdropping on feeding buzzes at the intraspecific level in wild bats and provide the first experimental quantification of potential eavesdropping in European bats at the interspecific level. Our data support the hypothesis that bat echolocation calls have a communicative potential that allows interspecific, and potentially intraspecific, eavesdropping in the wild.

URL:http://journal.frontiersin.org/article/10.3389/fphys.2013.00192/abstract
DOI:10.3389/fphys.2013.00192
Short Title:Front. Physiol.
BioAcoustica ID: 
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith